A Direct Neurokinin B Projection from the Arcuate Nucleus Regulates Magnocellular Vasopressin Cells of the Supraoptic Nucleus.

نویسندگان

  • R Pineda
  • N Sabatier
  • M Ludwig
  • R P Millar
  • G Leng
چکیده

Central administration of neurokinin B (NKB) agonists stimulates immediate early gene expression in the hypothalamus and increases the secretion of vasopressin from the posterior pituitary through a mechanism that depends on the activation of neurokinin receptor 3 receptors (NK3R). The present study reports that, in the rat, immunoreactivity for NK3R is expressed in magnocellular vasopressin and oxytocin neurones in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus, and that NKB immunoreactivity is expressed in fibres in close juxtaposition with vasopressin neurones at both of these sites. Retrograde tracing in the rat shows that some NKB-expressing neurones in the arcuate nucleus project to the SON and, in mice, using an anterograde tracing approach, it is found that kisspeptin-expressing neurones of the arcuate nucleus, which are known to co-express NKB, project to the SON and PVN. Finally, i.c.v. injection of the NK3R agonist senktide is shown to potently increase the electrical activity of vasopressin neurones in the SON in vivo with no significant effect detected on oxytocin neurones. The results suggest that NKB-containing neurones in the arcuate nucleus regulate the secretion of vasopressin from magnocellular neurones in rodents, and the possible significance of this is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats

The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...

متن کامل

The comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats

The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...

متن کامل

Increased synaptic activity in magnocellular neurons of supraoptic nucleus and plasma vasopressin levels due to acute administration of morphine in male rats

Introduction: The magnocellular neurons (MCNs) of the supraoptic nucleus (SON) play a crucial role in control of physiological and pathophysiologiccal condition due to two peptides that they synthesize, i.e. Oxytocin (OXT) and Vasopressin (AVP). The activity of MCNs is regulated by a variety of excitatory and inhibitory inputs. Opioid receptors are one of the important receptors in SON synap...

متن کامل

Intracerebroventricular injection of senktide-induced Fos expression in vasopressin-containing hypothalamic neurons in the rat.

Intracerebroventricular injection of senktide, a selective agonist for neurokinin B receptor (NK3), induced Fos expression in many neurons of the rat hypothalamus. Fos-positive neurons were predominantly present in the supraoptic and paraventricular hypothalamic nuclei, and some of them were seen in the lateral preoptic area, lateral hypothalamic area, arcuate nucleus, perifornical region, post...

متن کامل

Direct cellular peptidomics of supraoptic magnocellular and hippocampal neurons in low-density co-cultures.

Genomic and proteomic studies of brain regions of specialized function provide evidence that communication among neurons is mediated by systems of diverse chemical messengers. These analyses are largely tissue- or population-based, whereas the actual communication is from cell-to-cell. To understand the complement of intercellular signals produced by individual neurons, new methods are required...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroendocrinology

دوره 28 4  شماره 

صفحات  -

تاریخ انتشار 2016